Career Agriculture Forestry And Fishing Agricultural Engineers Agricultural Engineer

 
 
 
 
keyword job search Search by State or Nationwide enter name of city or metro area
 
     

 
Click Here to search jobs outside USA.
 

 

 Agricultural Engineer Jobs


Careers in Agricultural Engineer


Hot Job Finds! (461) Jobs Found > Agricultural Engineer

View Jobs

[1][2][3][4][5][6][7][8][9][10][11]  Next >>

Still can't find what you're looking for? search here:



 


Agricultural Engineer


Significant Points

  • Overall job opportunities in engineering are expected to be good, but will vary by specialty.
  • A bachelor’s degree is required for most entry-level jobs.
  • Starting salaries are significantly higher than those of college graduates in other fields.
  • Continuing education is critical for engineers wishing to enhance their value to employers as technology evolves.

Nature of the Work

Engineers apply the principles of science and mathematics to develop economical solutions to technical problems. Their work is the link between perceived social needs and commercial applications.

Engineers consider many factors when developing a new product. For example, in developing an industrial robot, robotic engineers precisely specify the functional requirements; design and test the robot’s components; integrate the components to produce the final design; and evaluate the design’s overall effectiveness, cost, reliability, and safety. This process applies to the development of many different products, such as chemicals, computers, gas turbines, helicopters, and toys.

In addition to design and development, many engineers work in testing, production, or maintenance. These engineers supervise production in factories, determine the causes of component failure, and test manufactured products to maintain quality. They also estimate the time and cost to complete projects. Some move into engineering management or into sales. In sales, an engineering background enables them to discuss technical aspects and assist in product planning, installation, and use. Supervisory engineers are responsible for major components or entire projects.

Engineers use computers extensively to produce and analyze designs; to simulate and test how a machine, structure, or system operates; and to generate specifications for parts. Many engineers also use computers to monitor product quality and control process efficiency. The field of nanotechnology, which involves the creation of high-performance materials and components by integrating atoms and molecules, also is introducing entirely new principles to the design process.

Specializations in engineering would include structural and transportation engineering, which are subdivisions of civil engineering; and ceramic, metallurgical, and polymer engineering, which are subdivisions of materials engineering. Engineers also may specialize in one industry, such as agriculture, or in one type of technology, such as turbines or semiconductor materials.

Agricultural engineers apply knowledge of engineering technology and science to agriculture and the efficient use of biological resources. They design agricultural machinery and equipment and agricultural structures. Some specialize in areas such as power systems and machinery design; structures and environment engineering; and food and bioprocess engineering. They develop ways to conserve soil and water and to improve the processing of agricultural products. Agricultural engineers often work in research and development, production, sales, or management.


Working Conditions

Most agricultural engineers work in office buildings, laboratories, or industrial plants. Others may spend time outdoors at construction sites and oil and gas exploration and production sites, where they monitor or direct operations or solve onsite problems. Some agricultural engineers travel extensively to plants or worksites.

Many agricultural engineers work a standard 40-hour week. At times, deadlines or design standards may bring extra pressure to a job, requiring agricultural engineers to work longer hours.


Employment

In 2004 engineers held 1.4 million jobs. Agricultural engineers comprise 3,400 of engineers who were employed during that year. About 555,000 engineering jobs were found in manufacturing industries, and another 378,000 wage and salary jobs were in the professional, scientific, and technical services sector, primarily in architectural, engineering, and related services and in scientific research and development services. Many engineers also worked in the construction and transportation, telecommunications, and utilities industries.

Federal, State, and local governments employed about 194,000 engineers in 2004. About 91,000 of these were in the Federal Government, mainly in the U.S. Departments of Defense, Transportation, Agriculture, Interior, and Energy and in the National Aeronautics and Space Administration. Most engineers in State and local government agencies worked in highway and public works departments. In 2004, about 41,000 engineers were self-employed, many as consultants.

Engineers are employed in every State, in small and large cities and in rural areas. Some branches of engineering are concentrated in particular industries and geographic areas—for example, petroleum engineering jobs tend to be located in areas with sizable petroleum deposits, such as Texas, Louisiana, Oklahoma, Alaska, and California. Others, such as civil engineering, are widely dispersed, and engineers in these fields often move from place to place to work on different projects.

Engineers are employed in every major industry. More than 22% of State and local government agencies employ Agricultural engineers.


Training

A bachelor’s degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a physical science or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, or civil engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests.

Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and the physical and life sciences. General courses not directly related to engineering, such as those in the social sciences or humanities, are often a required component of programs. Many programs also include courses in general engineering. A design course, sometimes accompanied by a computer or laboratory class or both, is part of the curriculum of most programs.

In addition to the standard engineering degree, many colleges offer 2- or 4-year degree programs in engineering technology. These programs, which usually include various hands-on laboratory classes that focus on current issues in the application of engineering principles, prepare students for practical design and production work, rather than for jobs that require more theoretical and scientific knowledge. Graduates of 4-year technology programs may get jobs similar to those obtained by graduates with a bachelor’s degree in engineering. Engineering technology graduates, however, are not qualified to register as professional engineers under the same terms as graduates with degrees in engineering. Some employers regard technology program graduates as having skills between those of a technician and an engineer.

Graduate training is essential for engineering faculty positions and many research and development programs, but is not required for the majority of entry-level engineering jobs. Many engineers obtain graduate degrees in engineering or business administration to learn new technology and broaden their education. Many high-level executives in government and industry began their careers as engineers.

About 360 colleges and universities offer bachelor’s degree programs in engineering that are accredited by the Accreditation Board for Engineering and Technology, Inc. (ABET), and about 230 colleges offer accredited programs in engineering technology. ABET accreditation is based on an examination of an engineering program’s student achievement, program improvement, faculty, curriculum, facilities, and institutional commitment to certain principles of quality and ethics. Although most institutions offer programs in the major branches of engineering, only a few offer programs in the smaller specialties. Also, programs of the same title may vary in content. For example, some programs emphasize industrial practices, preparing students for a job in industry, whereas others are more theoretical and are designed to prepare students for graduate work. Therefore, students should investigate curriculums and check accreditations carefully before selecting a college.

Admissions requirements for undergraduate engineering schools include a solid background in mathematics (algebra, geometry, trigonometry, and calculus) and science (biology, chemistry, and physics), with courses in English, social studies, and humanities. Bachelor’s degree programs in engineering typically are designed to last 4 years, but many students find that it takes between 4 and 5 years to complete their studies. In a typical 4-year college curriculum, the first 2 years are spent studying mathematics, basic sciences, introductory engineering, humanities, and social sciences. In the last 2 years, most courses are in engineering, usually with a concentration in one specialty. Some programs offer a general engineering curriculum; students then specialize on the job or in graduate school.

Some engineering schools and 2-year colleges have agreements whereby the 2-year college provides the initial engineering education, and the engineering school automatically admits students for their last 2 years. In addition, a few engineering schools have arrangements that allow students who spend 3 years in a liberal arts college studying pre-engineering subjects and 2 years in an engineering school studying core subjects to receive a bachelor’s degree from each school. Some colleges and universities offer 5-year master’s degree programs. Some 5-year or even 6-year cooperative plans combine classroom study and practical work, permitting students to gain valuable experience and to finance part of their education.

All 50 States and the District of Columbia require licensure for engineers who offer their services directly to the public. Engineers who are licensed are called professional engineers (PE). This licensure generally requires a degree from an ABET-accredited engineering program, 4 years of relevant work experience, and successful completion of a State examination. Recent graduates can start the licensing process by taking the examination in two stages. The initial Fundamentals of Engineering (FE) examination can be taken upon graduation. Engineers who pass this examination commonly are called engineers in training (EIT) or engineer interns (EI). After acquiring suitable work experience, EITs can take the second examination, the Principles and Practice of Engineering exam. Several States have imposed mandatory continuing education requirements for relicensure. Most States recognize licensure from other States, provided that the manner in which the initial license was obtained meets or exceeds their own licensure requirements. Many civil, electrical, mechanical, and chemical engineers are licensed PEs. Independent of licensure, various certification programs are offered by professional organizations to demonstrate competency in specific fields of engineering.

Engineers should be creative, inquisitive, analytical, and detail oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are important because engineers often interact with specialists in a wide range of fields outside engineering.

Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs.


Other Qualifications

Advancement

Job Outlook

Agricultural engineers are expected to have employment growth about as fast as the average for all occupations through 2014. The growing interest in worldwide standardization of agricultural equipment should result in increased employment of agricultural engineers. Job opportunities also should result from the need to feed a growing population, develop more efficient agricultural production, and conserve resources.


Earnings

Earnings for engineers vary significantly by specialty, industry, and education. Even so, as a group, engineers earn some of the highest average starting salaries among those holding bachelor’s degrees. Agricultural engineers earn $46,172 if they have a Bachelor's degree, and $53,022 for an engineer with a Master's.

Variation in median earnings and in the earnings distributions for engineers in the various branches of engineering also is significant.

In the Federal Government, mean annual salaries for engineers ranged from $100,059 in ceramic engineering to $70,086 in agricultural engineering in 2005.


Related Occupations

Engineers apply the principles of physical science and mathematics in their work. Other workers who use scientific and mathematical principles include architects, except landscape and naval; engineering and natural sciences managers; computer and information systems managers; computer programmers; Computer software engineers; mathematicians; drafters; engineering technicians; sales engineers; science technicians; and physical and life scientists, including agricultural and food scientists, biological scientists, conservation scientists and foresters, atmospheric scientists, chemists and materials scientists, environmental scientists and hydrologists, geoscientists, and physicists and astronomers.


Sources of Additional Information

Information on a career as an agricultural engineer can be obtained from:

* American Society of Agricultural and Biological Engineers, 2950 Niles Rd., St. Joseph, MI 49085-9659. Internet: http://www.asabe.org


Source: Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook, 2006-07 Edition, Engineers, on the Internet at http://www.bls.gov/oco/ocos027.htm (visited July 21, 2006).



State Career Channel


    Featured Jobs

    Browse Featured Jobs

    Employers post a job here

    New Jobs

    Browse New Jobs



    Featured Employers


    Partners

    Job Target One Click Recruitology